本月行业报告传递重大进展,一起草.CNN:探索CNN在草地监测中的应用与前景
今日官方传递行业研究报告,美团新模型有点东西:像调度外卖小哥一样优化大模型,很高兴为您解答这个问题,让我来帮您详细说明一下。数字化服务派单,精准对接维修需求
绵阳市涪城区、赣州市宁都县 ,济宁市任城区、大理鹤庆县、曲靖市麒麟区、广元市昭化区、西双版纳景洪市、营口市盖州市、阳泉市平定县、新乡市新乡县、忻州市岢岚县、辽阳市辽阳县、白城市镇赉县、文昌市潭牛镇、泰州市兴化市、洛阳市洛宁县、内蒙古呼和浩特市新城区 、安庆市望江县、黄冈市团风县、黔西南册亨县、凉山会东县、惠州市惠城区、六安市霍山县、天水市麦积区、临高县临城镇、芜湖市繁昌区、泰安市东平县、大理永平县、内蒙古巴彦淖尔市乌拉特前旗
本月官方渠道传达政策动向,本周监管部门传递新进展,一起草.CNN:探索CNN在草地监测中的应用与前景,很高兴为您解答这个问题,让我来帮您详细说明一下:家电在线客服系统,实时沟通维修需求
天津市西青区、徐州市贾汪区 ,广西河池市东兰县、凉山雷波县、枣庄市峄城区、红河开远市、内蒙古阿拉善盟阿拉善左旗、普洱市宁洱哈尼族彝族自治县、蚌埠市五河县、温州市泰顺县、重庆市合川区、吉安市新干县、六盘水市钟山区、黔东南麻江县、海西蒙古族乌兰县、三明市三元区、牡丹江市绥芬河市 、徐州市沛县、六安市金寨县、吉安市永丰县、忻州市宁武县、攀枝花市西区、鄂州市华容区、巴中市南江县、聊城市茌平区、临汾市古县、合肥市包河区、商洛市商南县、扬州市江都区、茂名市化州市、遵义市桐梓县
全球服务区域: 杭州市下城区、陇南市文县 、锦州市义县、商洛市山阳县、晋中市昔阳县、三明市三元区、徐州市邳州市、九江市瑞昌市、广西玉林市陆川县、白沙黎族自治县元门乡、内蒙古呼和浩特市土默特左旗、澄迈县金江镇、盐城市大丰区、普洱市景东彝族自治县、重庆市长寿区、马鞍山市雨山区、绵阳市平武县 、定西市渭源县、万宁市南桥镇、咸阳市彬州市、蚌埠市蚌山区、西安市周至县
本周数据平台稍早前行业报告,今日行业报告更新行业动向,一起草.CNN:探索CNN在草地监测中的应用与前景,很高兴为您解答这个问题,让我来帮您详细说明一下:家电配件订购专线,原厂正品保障
全国服务区域: 五指山市南圣、晋中市祁县 、盐城市盐都区、东莞市高埗镇、新乡市卫滨区、海南同德县、晋城市沁水县、淮南市谢家集区、吕梁市孝义市、广西桂林市象山区、遵义市习水县、湘潭市雨湖区、湛江市吴川市、抚州市南丰县、六安市叶集区、营口市西市区、上饶市玉山县 、牡丹江市海林市、中山市横栏镇、绍兴市上虞区、黔东南麻江县、郑州市中原区、内蒙古乌兰察布市集宁区、新乡市延津县、新乡市新乡县、上海市徐汇区、天津市河西区、常州市溧阳市、黄冈市黄州区、直辖县潜江市、玉溪市澄江市、遵义市绥阳县、延安市吴起县、三门峡市渑池县、三门峡市渑池县、雅安市宝兴县、临夏和政县、文昌市会文镇、新余市渝水区、邵阳市北塔区、广西桂林市临桂区
本周数据平台今日官方渠道披露重磅消息:本月相关部门发布最新研究报告,一起草.CNN:探索CNN在草地监测中的应用与前景
随着科技的飞速发展,人工智能在各个领域的应用日益广泛。其中,卷积神经网络(CNN)作为一种强大的深度学习模型,在图像识别、目标检测、图像分类等方面表现出色。在我国,CNN在草地监测领域的应用也日益受到关注。本文将探讨CNN在草地监测中的应用及其前景。 一、CNN在草地监测中的应用 1. 草地分类 草地分类是草地监测的基础,通过CNN可以对草地进行分类,如草地类型、植被覆盖度等。传统的草地分类方法主要依赖于人工经验,效率低下且容易出错。而CNN可以自动学习图像特征,提高分类准确率。 2. 草地病虫害检测 草地病虫害是影响草地生态环境和草地生产力的重要因素。CNN可以用于草地病虫害的检测,通过分析图像特征,识别出病虫害发生的区域和程度,为草地病虫害防治提供依据。 3. 草地水分含量监测 草地水分含量是影响草地生态环境和草地生产力的重要因素。CNN可以用于草地水分含量的监测,通过分析图像特征,判断草地水分状况,为草地灌溉和水资源管理提供依据。 4. 草地植被动态监测 草地植被动态监测是草地监测的重要内容。CNN可以用于草地植被动态监测,通过分析图像序列,了解草地植被的生长变化,为草地资源管理和保护提供依据。 二、CNN在草地监测中的优势 1. 自动化程度高 CNN可以自动学习图像特征,无需人工干预,提高监测效率。 2. 准确率高 CNN在图像识别、目标检测等方面具有很高的准确率,为草地监测提供可靠的数据支持。 3. 可扩展性强 CNN可以应用于多种草地监测任务,如草地分类、病虫害检测、水分含量监测等,具有很好的可扩展性。 三、CNN在草地监测中的前景 1. 技术不断成熟 随着深度学习技术的不断发展,CNN在草地监测中的应用将更加广泛,监测精度和效率将进一步提高。 2. 数据资源丰富 我国草地资源丰富,为CNN在草地监测中的应用提供了充足的数据资源。 3. 政策支持 我国政府高度重视草地生态环境保护和草地资源管理,为CNN在草地监测中的应用提供了政策支持。 总之,CNN在草地监测中的应用具有广阔的前景。随着技术的不断成熟和数据资源的丰富,CNN将为我国草地监测和草地资源管理提供有力支持,为我国草地生态环境保护和可持续发展做出贡献。
算力,就像骑手一样,也要学会调度。假如你在深夜点了一份外卖。几分钟后,系统迅速给你派来最近的骑手,他不需要全城出动的大军,只要顺路接单,就能把一碗热汤准时送到你手里。美团正在把这种 " 派单逻辑 " 搬到 AI 世界。在最新发布的 LongCat-Flash 模型里,算力不再是一股脑砸上去,而是像骑手一样被精准调度:复杂问题派更多 " 高手 ",简单问题就近解决,最大限度减少浪费。美团最近的财报,和所处的竞争环境,让它需要新的故事。而 LongCat-Flash,就是美团递出的第一张筹码:在大模型赛道开打另一场战斗,把百万 tokens 的推理成本压到 0.7 美元。以下为 LongCat-Flash 技术文档解读:像管理骑手一样管理算力技术创新:算力活在算法中首先,LongCat-Flash 的特别之处,不在于它 " 更大 ",而在于它会 " 精打细算 "。它的总参数规模有 5600 亿,但在实际推理时,每个 token 只需要调用一小部分,大约 18.6B – 31.3B。可以把它想象成一个庞大的骑手团队,不是每一单都要全员出动,而是根据订单的难度,派出最合适的几位骑手去送。这样一来,既能保证覆盖面,又避免了算力浪费。而所谓 " 零计算专家 ",其实就是处理简单任务的捷径。比如,一单只是送楼下便利店的一瓶水,就不需要总部复杂调度,附近的小哥顺路就能完成。同样,LongCat-Flash 遇到简单的 token,就直接放行,不浪费多余算力,把资源留给真正复杂的任务。这种 " 按需分配 " 的逻辑,让模型像调度骑手一样,把活派得更合理。上图中展示了 LongCat-Flash 的整体架构:每层由多头潜在注意力(MLA)+ MoE 专家组成,其中一部分是零计算专家,保证遇到简单 token 时可以 " 零开销 " 直接通过。上图中 ( a ) 曲线显示:在相同算力预算下,加入零计算专家的模型 loss 更低,收敛更快; ( b ) 激活专家数稳定在 8 个左右,平均约 27B 参数; ( c ) 不同 token 之间算力分配差异明显,说明模型确实在 " 挑单子 "。另一个创新点叫 ScMoE(Shortcut-connected MoE)。传统模型要等一批任务全部处理完,再进入下一批,就像骑手要等所有订单派完才能出门。ScMoE 的思路是 " 边派边送 ":骑手在送餐的同时,系统已经开始为他规划下一单。这样,算力的使用和通信可以同时进行,整体效率自然提升。图中三组曲线(不同模型规模)显示:有无 ScMoE 的 loss 几乎重合,质量完全一致,但由于通信和计算可以重叠,ScMoE 在吞吐率和推理速度上显著提升。工程能力:给算力买个 " 社保 "规模大,速度快只是第一步,关键是能不能稳定运行。LongCat-Flash 的训练方式更像是在逐步扩张一个骑手网络:先在小范围试运行,把调度规则、路线规划都调好,再推广到更大的范围,避免一上来就乱成一团。为了防止系统崩溃,它设置了 " 三重保障 "。Router 稳定,相当于避免所有订单都集中在一条线路;激活稳定,就像防止某几个骑手被派单过多而累坏;优化器稳定,则保证整体调度有节奏,长期能跑下去。正是靠这一套机制,它在 30 天里完成了 20 万亿 tokens 的训练任务。性能比较:表现稳健从成绩单来看,LongCat-Flash 不只是推理快,在各大基准测试中同样表现稳健:通用任务:在 MMLU(89.71)和 CEval(90.44)中,LongCat-Flash 达到与国际一线模型相当的水准。虽然 CEval 分数略低于 Kimi-K2(91.26),但整体表现依旧领先大多数基线模型,展现了不错的中文理解能力。复杂推理:在 GPQA-diamond(73.23)上,LongCat-Flash 与同类模型保持相近水准;在 DROP(79.06)、ZebraLogic(89.30)、GraphWalks-128k(51.05)等测试中,也稳定处于中上游梯队。数学能力:在 MATH500(96.40)和 AIME24(70.42)上,LongCat-Flash 与 Kimi-K2、DeepSeek 相比差距不大,维持在高水平。在 BeyondAIME(43.00)上虽有下滑,但整体仍优于多数模型。编程任务:在 HumanEval+(88.41)、MBPP+(79.63)等 benchmark 上,LongCat-Flash 表现稳定,略低于 Kimi-K2(93.29、79.87),但依旧优于 Gemini2.5 Flash、Claude Sonnet 等对手。实测美团 LongCat-Flash:快其实从上面的测试基准中可以看到,美团 LongCat-Flash 的性能并没有遥遥领先的地方,只能算是与各大主流模型能力旗鼓相当。因此在很多常用的测试中看不出差别,但有一点:美团这个模型是真的快,和买了准时宝一样。promtps:写一个 Python 函数 is_prime ( n ) ,判断 n 是否是质数,并给出 10 个不同的测试样例。左边模型是 LongCat-Flash 网页端,右边是 kimi 1.5(根据官网描述,响应更快),可以看到同样的提示词,LongCat-Flash 没有怎么思考,一行行内容直接飞出来,而 kimi 1.5 经过短暂思考后,(和 LongCat-Flash 相比)慢悠悠的把内容写出来。在核心代码部分,二者也没差别,可以说 LongCat-Flash 又快又好。LongCat-Flash 的速度和价格优势,未必能立刻改写行业格局。毕竟在大模型市场,生态和用户习惯往往比性能参数更具粘性。但它却透露出一个信号:美团依然习惯用自己最擅长的打法,把复杂的科技问题翻译成 " 调度骑手 " 的逻辑,再用价格杠杆撬开市场。这让问题变得更有趣:当 AI 巨头们在谈模型规模、参数精度时,美团却在谈派单效率和成本曲线。它看似 " 接地气 " 的切入点,反而可能成为搅动格局的变量,就像曾经的 DeepSeek 那样。十年前,美团用补贴烧出了外卖帝国。十年后,它是否能靠另一场价格战,把自己送进大模型的牌桌?没人能给出答案,但至少可以确定的是,美团已经递出了第一张筹码。