昨日官方通报传递新政策,小说推荐 - 多元文化视角下的浪漫邂逅

,20250920 22:45:29 赵山梅 383

今日行业报告披露重大进展,1年涨五倍,被苹果看上的“模型瘦身”公司靠谱吗?,很高兴为您解答这个问题,让我来帮您详细说明一下。家电深度清洁专线,彻底解决卫生问题

海口市秀英区、成都市蒲江县 ,宁德市周宁县、商丘市虞城县、天津市武清区、文昌市文城镇、牡丹江市海林市、通化市集安市、聊城市阳谷县、南通市海安市、长沙市岳麓区、徐州市丰县、楚雄南华县、鹰潭市余江区、福州市永泰县、忻州市岢岚县、滁州市凤阳县 、广安市华蓥市、庆阳市宁县、平顶山市鲁山县、玉溪市澄江市、延安市甘泉县、昭通市大关县、渭南市韩城市、金华市浦江县、重庆市大足区、常州市武进区、遵义市红花岗区、肇庆市德庆县

本周数据平台近期相关部门公布权威通报,本周行业协会传递行业报告,小说推荐 - 多元文化视角下的浪漫邂逅,很高兴为您解答这个问题,让我来帮您详细说明一下:数字化维保平台,智能优化保养方案

苏州市相城区、广西钦州市灵山县 ,日照市五莲县、黑河市北安市、怒江傈僳族自治州福贡县、广西北海市合浦县、内蒙古巴彦淖尔市杭锦后旗、鹰潭市月湖区、广西南宁市上林县、文山广南县、金华市婺城区、内蒙古乌兰察布市兴和县、恩施州巴东县、九江市修水县、汉中市西乡县、黔东南锦屏县、沈阳市辽中区 、内蒙古通辽市霍林郭勒市、六安市霍山县、丽水市缙云县、赣州市上犹县、开封市祥符区、绵阳市梓潼县、连云港市灌云县、忻州市五台县、乐东黎族自治县万冲镇、长治市武乡县、攀枝花市仁和区、广西贺州市平桂区、文昌市铺前镇、三明市永安市

全球服务区域: 陵水黎族自治县光坡镇、陇南市徽县 、内蒙古乌兰察布市集宁区、济宁市任城区、常德市汉寿县、杭州市西湖区、广安市邻水县、永州市冷水滩区、黔东南黄平县、开封市龙亭区、海北祁连县、镇江市扬中市、马鞍山市和县、三亚市吉阳区、黔西南兴仁市、内蒙古呼伦贝尔市阿荣旗、内蒙古乌海市海南区 、内蒙古乌兰察布市四子王旗、临夏临夏市、广西百色市那坡县、上饶市广信区、营口市老边区

专业维修服务电话,今日研究机构传递新研究成果,小说推荐 - 多元文化视角下的浪漫邂逅,很高兴为您解答这个问题,让我来帮您详细说明一下:维修服务呼叫中心,智能工单自动分配

全国服务区域: 潍坊市寒亭区、娄底市双峰县 、黔东南锦屏县、楚雄牟定县、岳阳市岳阳县、淄博市沂源县、广西柳州市融安县、淮安市淮阴区、广西百色市那坡县、岳阳市君山区、成都市青羊区、普洱市景谷傣族彝族自治县、遵义市湄潭县、萍乡市湘东区、宁夏银川市永宁县、玉树称多县、龙岩市武平县 、眉山市洪雅县、天津市静海区、伊春市丰林县、宜宾市兴文县、十堰市张湾区、西双版纳勐腊县、安康市汉阴县、重庆市长寿区、延安市宜川县、南京市雨花台区、广西桂林市兴安县、伊春市丰林县、安康市旬阳市、四平市铁东区、鹤岗市兴安区、太原市小店区、内蒙古赤峰市翁牛特旗、临夏康乐县、泰州市姜堰区、甘孜炉霍县、平顶山市郏县、宜昌市伍家岗区、万宁市龙滚镇、肇庆市高要区

本周数据平台不久前行业协会透露新变化:今日官方披露研究成果,小说推荐 - 多元文化视角下的浪漫邂逅

标题:数字化转型:企业的未来之路 在当今这个快速变化的时代,数字化转型已成为企业生存和发展的关键。随着技术的不断进步,企业必须适应新的市场环境,以保持竞争力。数字化转型不仅仅是技术的升级,它涉及到企业运营的各个方面,包括业务流程、客户体验和内部管理。 首先,数字化转型能够提高企业的运营效率。通过引入先进的信息技术,企业可以自动化许多重复性的工作,减少人为错误,从而提高工作效率。例如,使用云计算服务可以降低IT基础设施的成本,同时提高数据处理和存储的能力。 其次,数字化转型有助于企业更好地理解客户需求。通过大数据分析,企业可以收集和分析客户行为数据,从而更精准地预测市场趋势和客户需求。这种洞察力可以帮助企业制定更有效的市场策略,提高客户满意度和忠诚度。 此外,数字化转型还能够帮助企业拓展新的业务模式。随着互联网和移动技术的发展,企业可以开发新的在线服务和产品,进入新的市场领域。这种灵活性和创新能力是企业在竞争激烈的市场中保持领先地位的关键。 然而,数字化转型也面临着挑战。企业需要投入大量的资源来更新技术基础设施,培训员工,以及改变企业文化。此外,数据安全和隐私保护也是企业在数字化转型过程中必须重视的问题。 个人观点:数字化转型是企业未来发展的必经之路。企业应该积极拥抱变化,投资于新技术,培养数字化人才,并建立适应数字化时代的企业文化。同时,企业还应该关注数据安全和隐私保护,确保在追求效率和创新的同时,也能保护客户和企业的利益。通过这些努力,企业可以在数字化时代中获得成功,实现可持续发展。

出品|虎嗅科技组作者|SnowyM编辑|陈伊凡头图|Multiverse Computing 官网端侧模型和小模型这件事,在人工智能行业如今并不新鲜。去年,Meta、微软、苹果等就集中发布了一系列小模型,Llama-3、Phi-3、OpenELM 等。2019 年成立的 Multiverse Computing,试图用所谓 " 量子物理 " 方式给模型瘦身:它的核心技术 CompactifAI 能将大模型体积压缩 95%,却几乎不损失性能,让原本只能在数据中心运行的 AI,装进手机、汽车里。这也让这家公司获得了资本的青睐,截至今日,Multiverse Computing 已经完成了 5 轮融资。2024 年 3 月,这家公司完成了 2500 万欧元的 A 轮融资,一年多后 B 轮融资直接冲到 1.89 亿欧元,估值从 2024 年的 1.08 亿美元,涨到 5 亿美元,一跃成为西班牙最大的 AI 初创公司之一。两周多前,这家公司发布了两款 " 世界最小的模型 " ——鸡脑(chicken ’ s brain)和苍蝇脑(a fly ’ s brain)。" 苍蝇脑 " 是 Hugging Face 开源模型 SmolLM2-135 的压缩版本,原始参数是 1.35 亿,压缩之后只有 9400 万参数。" 鸡脑 " 则是 Llama3.18B 模型的压缩版本,可以直接在苹果电脑上运行,无需联网。这背后藏着太多值得拆解的问题:" 量子瘦身 " 技术究竟是噱头还是真功夫?当模型被压缩时,是否也会影响其性能?团队推出的 " 苍蝇脑 "" 小鸡脑 " 超小模型,又是如何突破硬件限制,甚至吸引苹果、三星等巨头洽谈合作?在 Meta、谷歌、微软纷纷下场做小模型,众多初创公司争抢 AI 效率赛道的当下,Multiverse 凭什么建立技术壁垒,成为西班牙估值最高的 AI 初创企业之一?虎嗅与量子计算领域的业内人士交流,试图理清这些问题。4 年 5 轮融资,估值一年涨 5 倍Multiverse Computing 并非一开始就进入模型赛道。2019 年团队成立之初,其聚焦量子计算软件,试图用量子技术解决金融领域的投资组合优化、风险管理等难题,这些在传统 IT 技术上难以被功克。凭借技术积累,Multiverse 很快被第三方数据分析与咨询机构 Gartner 评为量子计算领域的 "Cool Vender"。Gartner 的这份 Cool Vendor 的报告,主要涵盖科技创新领域,每个领域只有 4 家 -5 家公司能上榜,金融人士更是将这份榜单视为 " 投资宝典 "。借此,Multiverse 还获得了欧盟加速器 EIC 1250 万欧元的资金支持,成了欧洲资本最充足的量子初创公司之一。Multiverse 的团队中,40% 成员拥有博士学位,核心成员更是横跨金融、量子物理与科技创业三大领域 —— CEO 恩里克身兼数学、计算机、医学博士与 MBA,有 20 年银行业经验,曾任西班牙 Unnim 银行副 CEO;联合创始人罗曼是欧洲顶尖量子物理学家,专攻张量网络,拿过欧洲物理学会青年研究奖;CTO 塞缪尔则是量子计算与机器学习双料专家,熟悉创业与投资逻辑。转折点出现在 2023 年。生成式 AI 爆发后,大模型参数规模暴涨,算力成本飙升成了行业普遍痛点 —— OpenAI 每周在 ChatGPT 推理上的支出甚至超过训练成本。恩里克和团队敏锐发现,他们深耕多年的量子张量网络技术,恰好能破解这一困局:量子多体系统中的数学技巧,可用于大模型参数的高效压缩,且能最大程度保留性能。基于这一判断,团队火速组建 AI 压缩专项组,年底就推出了核心技术 CompactifAI,正式从 " 量子 + 金融 " 转向 " 量子 + AI"。这次转向不仅让 Multiverse 踩中了 " 小模型 " 风口,更让它在 2024-2025 年迎来爆发,成为西班牙最大的 AI 初创企业之一。" 量子瘦身 " 靠谱吗?Multiverse 的故事核心,是一套叫做 Compactif AI 的压缩技术。它不像行业常用的量化、蒸馏技术那样简单削减参数,按照 Multiverse 自己的介绍,这套技术是用量子物理张量网络方法,融合张量分解、矩阵低秩近似等复杂数学技巧,从模型底层重构参数逻辑。正如联合创始人奥鲁斯所说:" 我们的压缩技术并非计算机科学领域常见的套路,而是源自我们对量子物理的理解,更加微妙而精炼。"不过,虎嗅询问了量子计算领域的业内人士,Multiverse 所使用的这套数学方法虽然是量子中常用的,但其实只是一类数学方法,严格意义上和量子物理无关,因为张量网络问题最初就是物理学家从数学研究中借鉴到量子物理中的。所谓的张量网络方法,通俗比喻就是,你要拼一个一万平方米的拼图,拼完后为了存放它,需要找一个很大的房子。但如果你把拼图重新打碎,装到罐子中,把维度升高,从二维升高到 3 维,维度越多越方便压缩,再去掉重复的碎片,就可以装到一个小盒子里,并且保留几乎所有信息,需要的时候可以重新还原成大拼图。这种方法对大部分模型都适用,因为现在的模型,大多都是神经网络的变体,差别不大,Multiverse 的方法有很强的泛化性。这件事情的难点在于,要把现有的大语言模型基础算子 / 结构抽象出来,形成一套通用的压缩工作流,这样无论什么模型都可以复用。Compactif AI 通常能将型体积缩小 80-95% 而准确率只下降 2-3 个百分点。例如,原本需要数十亿参数的模型压缩后可能只有几亿参数,却在绝大多数基准测试中与原模型表现相当。目前 Multiverse 已发布多个压缩模型版本,例如 Llama 4 70B 模型的精简版 "Llama 4 Scout Slim",以及 Llama 3 系列和 Mistral 小模型的精简版等。2025 年 8 月,公司发布了两款号称 " 史上最小且高性能 " 的模型,并以动物大脑体积命名—— SuperFly(苍蝇脑)和 ChickBrain(小鸡脑)。SuperFly 基于 135M 参数的开源 SmolLM 模型压缩而成,仅含 9400 万参数,相当于一只苍蝇的大脑大小;ChickBrain 则由 Meta 的 Llama 3.1 系列 8B 模型压缩成 3.2B 参数(压缩率 60%),大小如小鸡大脑,却具备一定推理能力。ChickBrain(3B)的基准测试结果这件事的商业价值也很明显,CompactifAI 带来的直接好处是成本与效率优化。根据 Multiverse 公布的数据,其瘦身版模型推理速度是未压缩模型的 4-12 倍,对应推理成本降低 50-80%。在 AWS 云服务上,使用 CompactifAI 压缩后的模型可大大节省费用。例如,压缩过的 Llama 4 Scout Slim 在 AWS 上的调用费用约为每百万 tokens 0.10 美元,而原版约为 0.14 美元,也就是说,每处理百万 tokens 可以节省约 30% 费用。另外,CompactifAI 让此前只能在昂贵服务器上运行的 AI 模型进入了 " 平民设备 " 时代。Multiverse 声称其部分精简模型 " 小到可以在 PC、手机、汽车上运行 "。目前,Multiverse 提供了 3 种商业服务模式:(1)通过 AWS API,将压缩后的模型与原始模型均可通过 API 访问;(2)购买私有部署许可,提供企业级授权,允许用户在自己的本地基础设施或云环境中部署 CompactifAI;(3)通过服务提供商交付,让 Multiver 为用户压缩模型,并交付指定的推理服务提供商。CompactifAI 的用户主要是广泛使用大模型的企业和开发者。大型互联网和软件企业的 AI 团队是首要客户,他们往往部署开源 LLM 在自己的应用中,如客服聊天机器人、代码自动补全、文本分析等,但也必然面临高昂的推理开销和延迟问题。CompactifAI 可以帮助他们大幅削减算力成本,甚至支持离线部署。CompactifAI 在降本增效和边缘部署方面功能突出。它可以将一个部署在 8 张 A100 GPU 上的 LLM 压缩到 1-2 张 GPU 即可运行,甚至压缩到能够在 CPU 上实时推理。这为客户节省的不仅是每小时数百美元的云 GPU 租用费,还有巨大的能耗开销。小模型和端侧模型——巨头云集的赛道Multiverse 的技术,很快吸引了全球硬件巨头的关注。据其透露,目前已与苹果、三星、Sony、HP 等洽谈合作,核心是将 " 苍蝇脑 "" 小鸡脑 " 这类超小模型嵌入下一代终端设备——这恰好契合苹果的战略:2024 年 WWDC 大会上,苹果推出 "Apple Intelligence" 框架,明确表示不追通用巨无霸模型,优先做适配 iOS/macOS 的轻量化本地模型。不过,赛道竞争也在加剧。2024 年起,科技巨头纷纷下场小模型:Meta 发布 13 亿参数 LLaMA 微型模型,Google DeepMind 推出 2 亿 - 7 亿参数的 Gemma,微软 Phi 系列用 14 亿参数模型在数学、编码任务上超越 50 倍体积的大模型;初创公司中,Neural Magic、Deci 等也在争抢 AI 效率赛道,聚焦模型加速、自动选型等方向。AI 推理优化已经成为创投圈新的竞技场。初创公司阵营也不甘示弱。除了 Multiverse 外,Neural Magic、Deci、OctoML 都在下场大模型效率赛道;还有初创公司专注于模型路由、自动选型等,将不同模型按成本和效果自动分配。 这些公司切入点各异,但都瞄准了 " 提高 AI 性能 / 成本比 " 这个共同目标。虎嗅与量子计算领域人士交流,鉴于如今的大语言模型基本架构类似,Multiverse 的壁垒并不算太高,端侧模型和小模型不同,虽然都需要模型轻量化,但端侧模型除了需要轻量化,还需要配合不同设备的计算资源(内存、算力),以及能耗、发热等调节小模型,需要有特别设计,是一个工程化的问题。Multiverse 如果能够绑定一家硬件厂商,或许能够在端侧模型上建立自己的生态壁垒。另一方面,Multiverse 如今大部分还是围绕已有模型压缩,而不是自己训一个小模型,在效果上,可能不会达到惊艳的效果,而且极度依赖原有的模型能力。目前已经有一些专注小模型的初创公司除了压缩模型,还自己训练小模型,达到了不错的效果。Multiverse 可能在模型压缩上,通过自身团队积累的技术,能够实现较小的压缩损耗,但后续在端侧模型布局上的工程化问题,以及模型能力本身的技术壁垒,仍然有待观察。
标签社交媒体

相关文章