本月行业报告传递研究成果,九九热在线视频观看这里只有精品精选好剧尽在九九,一键速览精彩
本月行业协会发布重大动态,1年涨五倍,被苹果看上的“模型瘦身”公司靠谱吗?,很高兴为您解答这个问题,让我来帮您详细说明一下。全国标准化热线,统一维修服务标准
内江市隆昌市、株洲市茶陵县 ,内蒙古巴彦淖尔市乌拉特中旗、成都市新津区、无锡市宜兴市、烟台市福山区、岳阳市平江县、宝鸡市眉县、九江市修水县、东莞市东城街道、合肥市庐江县、宝鸡市金台区、江门市新会区、泰州市高港区、海南贵德县、上海市黄浦区、朝阳市北票市 、景德镇市浮梁县、临汾市汾西县、清远市清新区、广安市前锋区、鞍山市立山区、榆林市子洲县、宜宾市兴文县、江门市开平市、辽源市东丰县、文昌市东郊镇、恩施州来凤县、武威市凉州区
本周数据平台近期数据平台透露新政策,今日行业协会发布最新研究报告,九九热在线视频观看这里只有精品精选好剧尽在九九,一键速览精彩,很高兴为您解答这个问题,让我来帮您详细说明一下:家电售后专属热线,节假日无休服务
安阳市龙安区、济南市市中区 ,铜川市耀州区、西安市阎良区、宁夏固原市彭阳县、宜春市高安市、北京市朝阳区、通化市通化县、温州市龙湾区、哈尔滨市阿城区、巴中市恩阳区、苏州市常熟市、果洛玛多县、三门峡市卢氏县、嘉兴市平湖市、吉林市桦甸市、吕梁市石楼县 、广西南宁市上林县、黑河市嫩江市、绍兴市柯桥区、无锡市江阴市、内蒙古鄂尔多斯市准格尔旗、焦作市马村区、九江市濂溪区、广西崇左市扶绥县、宁夏银川市金凤区、吕梁市中阳县、宁夏中卫市沙坡头区、淄博市张店区、三亚市崖州区、雅安市汉源县
全球服务区域: 保山市腾冲市、海东市互助土族自治县 、西安市新城区、澄迈县金江镇、宣城市泾县、怀化市会同县、泉州市永春县、上海市黄浦区、遵义市余庆县、襄阳市谷城县、眉山市彭山区、长沙市长沙县、吉安市吉水县、西安市新城区、鹰潭市贵溪市、安顺市西秀区、福州市连江县 、扬州市江都区、铜川市印台区、吉林市磐石市、东莞市中堂镇、重庆市万州区
近日官方渠道传达研究成果,今日行业协会披露行业新成果,九九热在线视频观看这里只有精品精选好剧尽在九九,一键速览精彩,很高兴为您解答这个问题,让我来帮您详细说明一下:专业维修团队,客服热线一键联系
全国服务区域: 雅安市雨城区、万宁市和乐镇 、毕节市纳雍县、宁夏银川市灵武市、绵阳市梓潼县、忻州市静乐县、本溪市明山区、阜新市海州区、海口市秀英区、阿坝藏族羌族自治州茂县、襄阳市谷城县、广西梧州市龙圩区、吕梁市中阳县、雅安市名山区、安阳市内黄县、延安市富县、恩施州鹤峰县 、九江市浔阳区、广西贺州市八步区、达州市达川区、泰州市姜堰区、濮阳市范县、广元市昭化区、广西柳州市柳江区、德宏傣族景颇族自治州盈江县、扬州市邗江区、鹤壁市淇滨区、延安市子长市、自贡市荣县、济南市平阴县、潮州市潮安区、长春市绿园区、内蒙古兴安盟乌兰浩特市、合肥市长丰县、湘潭市湘乡市、三亚市天涯区、澄迈县中兴镇、泰州市高港区、汉中市洋县、聊城市阳谷县、黑河市嫩江市
专家在线诊断专线:今日行业报告传达政策变化,九九热在线视频观看这里只有精品精选好剧尽在九九,一键速览精彩
在现代社会,沟通技巧的重要性不言而喻。无论是在职场中与同事协作,还是在日常生活中与朋友和家人相处,良好的沟通能力都是维系和谐关系的关键。本文将探讨沟通技巧的重要性,并提供一些实用的建议,以帮助读者提升自己的沟通能力。 首先,沟通是信息传递的桥梁。在工作场合,有效的沟通能够确保团队成员之间的信息流通无阻,从而提高工作效率和项目成功率。例如,通过清晰的会议记录和及时的电子邮件更新,团队成员可以迅速了解项目的最新进展和变化,避免因信息不对称而产生的误解和冲突。 其次,沟通技巧对于个人职业发展同样至关重要。良好的沟通能力可以帮助个人在面试中给面试官留下深刻印象,或者在职场中获得更多的晋升机会。通过展示自己的沟通技巧,个人可以更好地表达自己的想法和观点,从而在竞争中脱颖而出。 此外,沟通技巧在解决冲突和促进团队合作方面也发挥着重要作用。通过倾听他人的观点和需求,以及表达自己的感受和立场,可以找到双方都能接受的解决方案,从而维护团队的和谐与稳定。 为了提升沟通技巧,以下是一些建议: 倾听:在对话中,倾听对方的观点和需求是建立良好沟通的基础。通过全神贯注地倾听,可以更好地理解对方,并在回应时提供更有针对性的信息。 清晰表达:在表达自己的观点时,要尽量做到简洁明了。避免使用复杂的术语或冗长的句子,这样可以确保信息的传达更加高效。 非语言沟通:肢体语言、面部表情和语调都是沟通的重要组成部分。通过保持良好的眼神交流和适当的肢体语言,可以增强沟通的效果。 反馈:在沟通过程中,给予对方及时的反馈是非常重要的。这不仅有助于确认信息的准确性,还可以促进双方的互动和理解。 适应性:不同的人有不同的沟通风格和偏好。了解并适应对方的沟通方式,可以帮助我们更有效地与他人交流。 总之,沟通技巧是个人和职业成功的关键。通过不断学习和实践,我们可以提高自己的沟通能力,从而在各种社交场合中更加自信和高效。
出品|虎嗅科技组作者|SnowyM编辑|陈伊凡头图|Multiverse Computing 官网端侧模型和小模型这件事,在人工智能行业如今并不新鲜。去年,Meta、微软、苹果等就集中发布了一系列小模型,Llama-3、Phi-3、OpenELM 等。2019 年成立的 Multiverse Computing,试图用所谓 " 量子物理 " 方式给模型瘦身:它的核心技术 CompactifAI 能将大模型体积压缩 95%,却几乎不损失性能,让原本只能在数据中心运行的 AI,装进手机、汽车里。这也让这家公司获得了资本的青睐,截至今日,Multiverse Computing 已经完成了 5 轮融资。2024 年 3 月,这家公司完成了 2500 万欧元的 A 轮融资,一年多后 B 轮融资直接冲到 1.89 亿欧元,估值从 2024 年的 1.08 亿美元,涨到 5 亿美元,一跃成为西班牙最大的 AI 初创公司之一。两周多前,这家公司发布了两款 " 世界最小的模型 " ——鸡脑(chicken ’ s brain)和苍蝇脑(a fly ’ s brain)。" 苍蝇脑 " 是 Hugging Face 开源模型 SmolLM2-135 的压缩版本,原始参数是 1.35 亿,压缩之后只有 9400 万参数。" 鸡脑 " 则是 Llama3.18B 模型的压缩版本,可以直接在苹果电脑上运行,无需联网。这背后藏着太多值得拆解的问题:" 量子瘦身 " 技术究竟是噱头还是真功夫?当模型被压缩时,是否也会影响其性能?团队推出的 " 苍蝇脑 "" 小鸡脑 " 超小模型,又是如何突破硬件限制,甚至吸引苹果、三星等巨头洽谈合作?在 Meta、谷歌、微软纷纷下场做小模型,众多初创公司争抢 AI 效率赛道的当下,Multiverse 凭什么建立技术壁垒,成为西班牙估值最高的 AI 初创企业之一?虎嗅与量子计算领域的业内人士交流,试图理清这些问题。4 年 5 轮融资,估值一年涨 5 倍Multiverse Computing 并非一开始就进入模型赛道。2019 年团队成立之初,其聚焦量子计算软件,试图用量子技术解决金融领域的投资组合优化、风险管理等难题,这些在传统 IT 技术上难以被功克。凭借技术积累,Multiverse 很快被第三方数据分析与咨询机构 Gartner 评为量子计算领域的 "Cool Vender"。Gartner 的这份 Cool Vendor 的报告,主要涵盖科技创新领域,每个领域只有 4 家 -5 家公司能上榜,金融人士更是将这份榜单视为 " 投资宝典 "。借此,Multiverse 还获得了欧盟加速器 EIC 1250 万欧元的资金支持,成了欧洲资本最充足的量子初创公司之一。Multiverse 的团队中,40% 成员拥有博士学位,核心成员更是横跨金融、量子物理与科技创业三大领域 —— CEO 恩里克身兼数学、计算机、医学博士与 MBA,有 20 年银行业经验,曾任西班牙 Unnim 银行副 CEO;联合创始人罗曼是欧洲顶尖量子物理学家,专攻张量网络,拿过欧洲物理学会青年研究奖;CTO 塞缪尔则是量子计算与机器学习双料专家,熟悉创业与投资逻辑。转折点出现在 2023 年。生成式 AI 爆发后,大模型参数规模暴涨,算力成本飙升成了行业普遍痛点 —— OpenAI 每周在 ChatGPT 推理上的支出甚至超过训练成本。恩里克和团队敏锐发现,他们深耕多年的量子张量网络技术,恰好能破解这一困局:量子多体系统中的数学技巧,可用于大模型参数的高效压缩,且能最大程度保留性能。基于这一判断,团队火速组建 AI 压缩专项组,年底就推出了核心技术 CompactifAI,正式从 " 量子 + 金融 " 转向 " 量子 + AI"。这次转向不仅让 Multiverse 踩中了 " 小模型 " 风口,更让它在 2024-2025 年迎来爆发,成为西班牙最大的 AI 初创企业之一。" 量子瘦身 " 靠谱吗?Multiverse 的故事核心,是一套叫做 Compactif AI 的压缩技术。它不像行业常用的量化、蒸馏技术那样简单削减参数,按照 Multiverse 自己的介绍,这套技术是用量子物理张量网络方法,融合张量分解、矩阵低秩近似等复杂数学技巧,从模型底层重构参数逻辑。正如联合创始人奥鲁斯所说:" 我们的压缩技术并非计算机科学领域常见的套路,而是源自我们对量子物理的理解,更加微妙而精炼。"不过,虎嗅询问了量子计算领域的业内人士,Multiverse 所使用的这套数学方法虽然是量子中常用的,但其实只是一类数学方法,严格意义上和量子物理无关,因为张量网络问题最初就是物理学家从数学研究中借鉴到量子物理中的。所谓的张量网络方法,通俗比喻就是,你要拼一个一万平方米的拼图,拼完后为了存放它,需要找一个很大的房子。但如果你把拼图重新打碎,装到罐子中,把维度升高,从二维升高到 3 维,维度越多越方便压缩,再去掉重复的碎片,就可以装到一个小盒子里,并且保留几乎所有信息,需要的时候可以重新还原成大拼图。这种方法对大部分模型都适用,因为现在的模型,大多都是神经网络的变体,差别不大,Multiverse 的方法有很强的泛化性。这件事情的难点在于,要把现有的大语言模型基础算子 / 结构抽象出来,形成一套通用的压缩工作流,这样无论什么模型都可以复用。Compactif AI 通常能将型体积缩小 80-95% 而准确率只下降 2-3 个百分点。例如,原本需要数十亿参数的模型压缩后可能只有几亿参数,却在绝大多数基准测试中与原模型表现相当。目前 Multiverse 已发布多个压缩模型版本,例如 Llama 4 70B 模型的精简版 "Llama 4 Scout Slim",以及 Llama 3 系列和 Mistral 小模型的精简版等。2025 年 8 月,公司发布了两款号称 " 史上最小且高性能 " 的模型,并以动物大脑体积命名—— SuperFly(苍蝇脑)和 ChickBrain(小鸡脑)。SuperFly 基于 135M 参数的开源 SmolLM 模型压缩而成,仅含 9400 万参数,相当于一只苍蝇的大脑大小;ChickBrain 则由 Meta 的 Llama 3.1 系列 8B 模型压缩成 3.2B 参数(压缩率 60%),大小如小鸡大脑,却具备一定推理能力。ChickBrain(3B)的基准测试结果这件事的商业价值也很明显,CompactifAI 带来的直接好处是成本与效率优化。根据 Multiverse 公布的数据,其瘦身版模型推理速度是未压缩模型的 4-12 倍,对应推理成本降低 50-80%。在 AWS 云服务上,使用 CompactifAI 压缩后的模型可大大节省费用。例如,压缩过的 Llama 4 Scout Slim 在 AWS 上的调用费用约为每百万 tokens 0.10 美元,而原版约为 0.14 美元,也就是说,每处理百万 tokens 可以节省约 30% 费用。另外,CompactifAI 让此前只能在昂贵服务器上运行的 AI 模型进入了 " 平民设备 " 时代。Multiverse 声称其部分精简模型 " 小到可以在 PC、手机、汽车上运行 "。目前,Multiverse 提供了 3 种商业服务模式:(1)通过 AWS API,将压缩后的模型与原始模型均可通过 API 访问;(2)购买私有部署许可,提供企业级授权,允许用户在自己的本地基础设施或云环境中部署 CompactifAI;(3)通过服务提供商交付,让 Multiver 为用户压缩模型,并交付指定的推理服务提供商。CompactifAI 的用户主要是广泛使用大模型的企业和开发者。大型互联网和软件企业的 AI 团队是首要客户,他们往往部署开源 LLM 在自己的应用中,如客服聊天机器人、代码自动补全、文本分析等,但也必然面临高昂的推理开销和延迟问题。CompactifAI 可以帮助他们大幅削减算力成本,甚至支持离线部署。CompactifAI 在降本增效和边缘部署方面功能突出。它可以将一个部署在 8 张 A100 GPU 上的 LLM 压缩到 1-2 张 GPU 即可运行,甚至压缩到能够在 CPU 上实时推理。这为客户节省的不仅是每小时数百美元的云 GPU 租用费,还有巨大的能耗开销。小模型和端侧模型——巨头云集的赛道Multiverse 的技术,很快吸引了全球硬件巨头的关注。据其透露,目前已与苹果、三星、Sony、HP 等洽谈合作,核心是将 " 苍蝇脑 "" 小鸡脑 " 这类超小模型嵌入下一代终端设备——这恰好契合苹果的战略:2024 年 WWDC 大会上,苹果推出 "Apple Intelligence" 框架,明确表示不追通用巨无霸模型,优先做适配 iOS/macOS 的轻量化本地模型。不过,赛道竞争也在加剧。2024 年起,科技巨头纷纷下场小模型:Meta 发布 13 亿参数 LLaMA 微型模型,Google DeepMind 推出 2 亿 - 7 亿参数的 Gemma,微软 Phi 系列用 14 亿参数模型在数学、编码任务上超越 50 倍体积的大模型;初创公司中,Neural Magic、Deci 等也在争抢 AI 效率赛道,聚焦模型加速、自动选型等方向。AI 推理优化已经成为创投圈新的竞技场。初创公司阵营也不甘示弱。除了 Multiverse 外,Neural Magic、Deci、OctoML 都在下场大模型效率赛道;还有初创公司专注于模型路由、自动选型等,将不同模型按成本和效果自动分配。 这些公司切入点各异,但都瞄准了 " 提高 AI 性能 / 成本比 " 这个共同目标。虎嗅与量子计算领域人士交流,鉴于如今的大语言模型基本架构类似,Multiverse 的壁垒并不算太高,端侧模型和小模型不同,虽然都需要模型轻量化,但端侧模型除了需要轻量化,还需要配合不同设备的计算资源(内存、算力),以及能耗、发热等调节小模型,需要有特别设计,是一个工程化的问题。Multiverse 如果能够绑定一家硬件厂商,或许能够在端侧模型上建立自己的生态壁垒。另一方面,Multiverse 如今大部分还是围绕已有模型压缩,而不是自己训一个小模型,在效果上,可能不会达到惊艳的效果,而且极度依赖原有的模型能力。目前已经有一些专注小模型的初创公司除了压缩模型,还自己训练小模型,达到了不错的效果。Multiverse 可能在模型压缩上,通过自身团队积累的技术,能够实现较小的压缩损耗,但后续在端侧模型布局上的工程化问题,以及模型能力本身的技术壁垒,仍然有待观察。